
Gofri Documentation
Release 1.0.3

ThomasKenyeres

Apr 12, 2018





Getting started:

1 Installation 1

2 Initializing a project 3

3 Configuration file 5

4 Start your application 7

5 Generator 9

6 HTTP request handling 11

7 Filters 15

i



ii



CHAPTER 1

Installation

Install from pip To install latest stable version run $ pip3 install Gofri.

To install current development version check out the GitHub repository.

1



Gofri Documentation, Release 1.0.3

2 Chapter 1. Installation



CHAPTER 2

Initializing a project

$ python3 -m gofri.generate_project <project-name> is the common way to create a project,
which will have the following structure

My-First-Project
my_first_project

__init__.py
start.py
conf.xml
modules.py
generate.py
back

__init__.py
controller

__init__.py
...

dao
__init__.py
...

...
web

<web content if needed>

3



Gofri Documentation, Release 1.0.3

4 Chapter 2. Initializing a project



CHAPTER 3

Configuration file

The main configuration file is conf.xml and it’s in the root package.

3.1 HTTP

<configuration>
<project>

<app-path>example.app</app-path>
</project>
<hosting>

<host></host>
<port>8080</port>

</hosting>

...

</configuration>

If you leave <host> empty, the default is 127.0.0.1.

3.2 Dependencies

<configuration>
<dependencies>

<dependency>matplotlib</dependency>
<dependency>pygame</dependency>

</dependencies>

...

</configuration>

5



Gofri Documentation, Release 1.0.3

This is how you can specify project dependencies in current version. There will be more effective solutions for this
purpose.

Note: Dependencies are automatically installed at startup, if they are not installed yet.

6 Chapter 3. Configuration file



CHAPTER 4

Start your application

To start your webapp run $ python3 start.py in the root package.

Expected output after startup:

GOFRI -- version: 1.0.1
################################################################################

All required dependencies are installed

* Running on http://127.0.0.1:8080/ (Press CTRL+C to quit)

7



Gofri Documentation, Release 1.0.3

8 Chapter 4. Start your application



CHAPTER 5

Generator

Each generated project has a generate.py in the root package. It’s a tool for rapid module generation for your
project.

Main features:

Command: generate

Generate custom module:

generate
module <name> <path>

Generate predefined modules:

generate
controller <name>
filter <name>
service <name>
dto <name>
entity <name> [column names separated with space]

Example usage:

$ python3 generate.py generate entity dog name breed birth_year

9



Gofri Documentation, Release 1.0.3

10 Chapter 5. Generator



CHAPTER 6

HTTP request handling

6.1 Configuration

Configuration with conf.xml

6.2 HTTP controllers

HTTP controllers are modules which are responsible for receiving requests and sending responses to a client through
HTTP connection.

Tip: It’s recommended to separate some request handler functions into more controllers to avoid too big, messy files.

Generate a controller The common way to create a controller is using generate.py for this purpose:

$ python3 generate.py generate controller <name>

6.3 Decorator usage

The basic gofri HTTP decorators are in the gofri.lib.decorate.http module, and they are responsible for
route management. They are GET, POST, PUT, HEAD and DELETE depending on what request method do you want
to accept on the endpoint.

from gofri.lib.decorate.http import GET, POST, PUT, HEAD, DELETE

This is the first (positional) argument, which is always required:

• path Defines the url path of the given endpoint, you can also define path variables: path="/people/
<person_id>", which have to be the first arguments of the decorated function (They are positional
arguments of the function).

11

../getting_started/config.html#http
../getting_started/generator.html


Gofri Documentation, Release 1.0.3

Example usage with @GET:

@GET(path="people/<person_id>")
def get_person(person_id):

return person_service.get(person_id)

The remaining variables are strings which contain the names of the request part attributes seperated by semicolons(;).
Example usage: header='username;password'. The decorated function expects arguments with the defined
names, so avoid using the same names even in different decorator values!

• params The variables defined here are the path parameters of a request, e.g. /search?
keyword=house&where=images so the function’s arguments would be keyword and where.

• headers The request header parameters are defined in this string.

@GET

@GET("/people")
def get_people():

return [Person("Jane"), Person("Jack")]

@GET(path="/person", params="person_id")
def get_person(person_id):

return person_service.get(person_id)

Example: <host>/person?person_id=1

@POST

@POST has additional input values like:

• body Contains the request body.

@POST(path="/add", body="name;age")
def add_person(name, age):

person_service.add(Person(name, age))

• json Contains the request body if it’s in application/json format:

@POST(path="/add_more", json="people")
def add_people(people):

person_service.add_more(people)

Request body (application/json):

{
"people": [

{"name": "John", "age": 23},
{"name": "Jane", "age": 18},
{"name": "Jack", "age": 34}

]
}

headers example:

@POST(path="/auth", headers="name;password")
def auth(name, password):

return service.auth()

You can also use more request part decorator value at once:

12 Chapter 6. HTTP request handling



Gofri Documentation, Release 1.0.3

@POST(path="/library/<room_id>", json="books", params="note"):
def add_books(room_id, books, note):

library.rooms[room_id].add_books(books, note)

More @HEAD, @PUT and @DELETE is also available, they work the same way as @POST.

Note: The big advantage of Gofri’s HTTP decorators is that you don’t have to read different request parts inside
the function because you have them as parameters. If you want to use request parts differently, do as you would do it
in Flask.

6.3. Decorator usage 13



Gofri Documentation, Release 1.0.3

14 Chapter 6. HTTP request handling



CHAPTER 7

Filters

7.1 What are these?

HTTP filters are tools for filtering requests and set different properties before the request handler functions run. To
setup a filter is very easy you just have to create a class with @GofriFilter() decorator.

@GofriFilter()
class MyFilter(Filter):

def filter(self, request, response):
return self._continue(request, response)

Tip: It’s recommended to inherit your class from gofri.lib.http.filter.Filter, but works anyway, so
your IDE can easily recognize overrideable methods.

Methods of Filter class:

• filter(request, response) The filtering logic should be implemented here, and to let the request go forward
_continue(request, response) should be called.

• _continue(request, response) When this method is called, the request and response is passed to the next
filter or to a controller which has a method to handle requests on the specific url.

7.2 Filtering by urls

By default a filter doesn’t filter anything, it’s configurable in the decorator GofriFilter(). The URLs which you
want to filter are given in the decorator’s urls value, which is a list with the given URLs in string format.

@GofriFilter(urls=["/vpost", "/send"])
class MyFilter(Filter):

def filter(self, request, response):
return self._continue(request, response)

15



Gofri Documentation, Release 1.0.3

If you set @GofriFilter() decorator value filter_all to True, the filter activates on all URL endpoints on
the server.

@GofriFilter(filter_all=True)
class MyFilter(Filter):

def filter(self, request, response):
return self._continue(request, response)

7.3 Specify order

You can configure that in which order do you want to make your filters work. The lower the order value is, the sooner
the filter works.

@GofriFilter(filter_all=True, order=1)
class AFilter(Filter):

...

@GofriFilter(filter_all=True, order=0)
class BFilter(Filter):

...

In the example above, BFilter filters before AFilter. The default order is 0. If two filters has the same order,
they are ranked by definition order in the code.

Note: You don’t have to specify the order of your filters strictly like 0-1-2..., it also works well with orders
2-3-6.

16 Chapter 7. Filters


	Installation
	Initializing a project
	Configuration file
	Start your application
	Generator
	HTTP request handling
	Filters

